LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIRST SEMESTER – **NOVEMBER 2023**

UMT 1501 – ALGEBRA

	te: 01-11-2023 Dept. No. Max. : 100 Marks
Tin	ne: 09:00 AM - 12:00 NOON
	SECTION A - K1 (CO1)
	Answer ALL the Questions -(10 x 1 = 10)
1.	Answer the following
a)	Write the other roots of the biquadratic equation when $\sqrt{5} + \sqrt{2}$ is one of its roots.
b)	When will be an equation $f(x) = 0$ is known as complete?
c)	State Exponential theorem.
d)	What is the characteristic equation of the matrix A?
e)	Find the number of integers less than and prime to 729?
2.	Fill in the blanks
a)	In an equation with real coefficients, roots occur in pairs.
b)	Using rule, one can ascertain whether an equation $f(x) = 0$ has imaginary roots or not.
c)	If $-1 < x < 1$, then $log(1 + x)$
d)	Every square matrix satisfies it's
e)	The sum of the integers less than N and prime to it including unity is
	SECTION A - K2 (CO1)
	Answer ALL the Questions (10 x 1 = 10)
3.	Choose the correct answers for the following
a)	Write the roots of the cubic equation which are in Arithmetical progression.
	i) a/d , a, $a \times d$ ii) $a - d$, a, $a + d$ iii) $a + d$, a/d , $a - d$ iv) None of these
b)	The series of signs of the terms in the polynomial $x^7 + 8x^5 - x + 9 = 0$ is
	i) + + - + ii) + + iii) - + - + iv) + +
c)	Sum to infinity of the series $1 + \frac{x}{1!}\log_e a + \frac{x^2}{2!}(\log_e a)^2 + \dots + \frac{x^r}{r!}(\log_e a)^r + \dots$, (where a is a
	positive number) =
	i) x^a ii) e^a iii) a^x iv) $\log(a + x)$
d)	The sum of the elements on the diagonal A is
	 i) The product of the eigenvalues of A ii) The sum of the eigenvalues of A iii) None of these
e)	The number of integers less than and prime to 720 is
,	i) 192 ii) 172 iii) 182 iv) 162
4.	State True or False
a)	Every equation $f(x) = 0$ of the n th degree has n roots and no more.
b)	Cardon's method is used to determine both commensurable and the incommensurable roots of a
	numerical equation.
c)	The coefficient of x ⁿ in the infinite series $1 + \frac{b+ax}{1!} + \frac{(b+ax)^2}{2!} + \dots + \frac{(b+ax)^n}{n!} + \dots$ is $\frac{e^b a^n}{n!}$.

<i>,</i>	he determinant of the matrix A is equal to the product of its eigen values.	
e)	Fermat's theorem states that if p is a prime and a is any number prime to p there divisible by p.	$a^{p-1} - 1$ is not
	SECTION B - K3 (CO2)	
Ans	wer any TWO of the following	$(2 \times 10 = 20)$
5.	Solve the equation $x^4 - 5x^3 + 4x^2 + 8x - 8 = 0$ given that one of the root is 1	$-\sqrt{5}$.
6.	Solve the equation $81x^3 - 18x^2 - 36x + 8 = 0$ whose roots are in harmonic p	progression. Also
7.	write the roots of the cubic polynomial in GP and AP.	
	Sum to infinity of the series $\frac{11.14}{10.15.20} + \frac{11.14.17}{10.15.20.25} + \dots$	
8.	Determine the Characteristic equation of the matrix $A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}$ and hence find	its inverse.
	SECTION C – K4 (CO3)	
Ans	wer any TWO of the following	$(2 \times 10 = 20)$
9.	If the sum of two roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$ equals the	sum of the othe
	two, show that $p^3 + 8r = 4pq$.	
10.	Predict the roots of the reciprocal equation $6x^5 - x^4 - 43x^3 + 43x^2 + x - 6 = 0$.	
11.	Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & 3 \\ 3 & 2 & -3 \end{bmatrix}$.	
12.		
	SECTION D – K5 (CO4)	
Ans	wer any ONE of the following	$(1 \times 20 = 20)$
13.	a) Find the condition that the roots of the equation $ax^3 + 3bx^2 + 3cx + d = 0$ m	`
	progression. Also solve $27x^3 + 42x^2 - 28x - 8 = 0$ whose roots are in GP.	(15 Marks)
	b) Determine the nature of the roots of the equation $x^5 - 6x^2 - 4x + 5 = 0$.	(5 Marks)
14.	a) Sum the series $\frac{5}{1!} + \frac{7}{3!} + \frac{9}{5} + \dots$	(8 Marks)
	b) Determine the eigen values and eigen vectors of $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.	(12 Marks)
	SECTION E – K6 (CO5)	
Ans	wer any ONE of the following	$(1 \times 20 = 20)$
15.	a) Estimate the sum of the fourth powers of the roots of $x^7 + 5x^4 + 1 = 0$ using theorem. (5 Ma b) Predict the positive root of the equation $x^3 - 2x^2 - 3x - 4 = 0$ correct to 2	arks)
		larks)
16.	a) Resolve into Partial fractions $\frac{9}{(x-1)(x+2)^2}$. (8 M	arks)
		Marks)